Follow
Pascal Frossard
Title
Cited by
Cited by
Year
DeepFool: a simple and accurate method to fool deep neural networks
SM Moosavi-Dezfooli, A Fawzi, P Frossard
IEEE CVPR, 2016
61652016
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
DI Shuman, SK Narang, P Frossard, A Ortega, P Vandergheynst
IEEE signal processing magazine 30 (3), 83-98, 2013
47072013
Universal adversarial perturbations
SM Moosavi-Dezfooli, A Fawzi, O Fawzi, P Frossard
IEEE CVPR, 2017
31742017
Graph signal processing: Overview, challenges, and applications
A Ortega, P Frossard, J Kovačević, JMF Moura, P Vandergheynst
Proceedings of the IEEE 106 (5), 808-828, 2018
17942018
Dictionary learning
I Tošić, P Frossard
Signal Processing Magazine, IEEE 28 (2), 27-38, 2011
11122011
Learning Laplacian Matrix in Smooth Graph Signal Representations
X Dong, D Thanou, P Frossard, P Vandergheynst
IEEE Transactions on Signal Processing 64 (23), 6160 - 6173, 2016
6972016
Learning graphs from data: A signal representation perspective
X Dong, D Thanou, M Rabbat, P Frossard
IEEE Signal Processing Magazine 36 (3), 44-63, 2019
4562019
Robustness of classifiers: from adversarial to random noise
A Fawzi, SM Moosavi-Dezfooli, P Frossard
NIPS, 2016
4252016
Analysis of classifiers’ robustness to adversarial perturbations
A Fawzi, O Fawzi, P Frossard
Machine Learning, 2017
4142017
Robustness via curvature regularization, and vice versa
SM Moosavi-Dezfooli, A Fawzi, J Uesato, P Frossard
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
3632019
Adaptive data augmentation for image classification
A Fawzi, H Samulowitz, D Turaga, P Frossard
2016 IEEE international conference on image processing (ICIP), 3688-3692, 2016
3262016
Graph-based compression of dynamic 3D point cloud sequences
D Thanou, PA Chou, P Frossard
IEEE Transactions on Image Processing 25 (4), 1765-1778, 2016
2952016
Digress: Discrete denoising diffusion for graph generation
C Vignac, I Krawczuk, A Siraudin, B Wang, V Cevher, P Frossard
ICLR, 2023
2732023
Clustering on multi-layer graphs via subspace analysis on Grassmann manifolds
X Dong, P Frossard, P Vandergheynst, N Nefedov
IEEE Transactions on signal processing 62 (4), 905-918, 2013
2452013
Empirical study of the topology and geometry of deep networks
A Fawzi, SM Moosavi-Dezfooli, P Frossard, S Soatto
IEEE CVPR, 2018
234*2018
Sparsefool: a few pixels make a big difference
A Modas, SM Moosavi-Dezfooli, P Frossard
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019
2222019
The robustness of deep networks: A geometrical perspective
A Fawzi, SM Moosavi-Dezfooli, P Frossard
IEEE Signal Processing Magazine 34 (6), 50-62, 2017
220*2017
Adaptive quantization for deep neural network
Y Zhou, SM Moosavi-Dezfooli, NM Cheung, P Frossard
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
2112018
Learning heat diffusion graphs
D Thanou, X Dong, D Kressner, P Frossard
IEEE Transactions on Signal and Information Processing over Networks 3 (3 …, 2017
2002017
Clustering with multi-layer graphs: A spectral perspective
X Dong, P Frossard, P Vandergheynst, N Nefedov
IEEE Transactions on Signal Processing 60 (11), 5820-5831, 2012
1892012
The system can't perform the operation now. Try again later.
Articles 1–20