REPuter: the manifold applications of repeat analysis on a genomic scale S Kurtz, JV Choudhuri, E Ohlebusch, C Schleiermacher, J Stoye, ... Nucleic acids research 29 (22), 4633-4642, 2001 | 2118 | 2001 |
Replacing suffix trees with enhanced suffix arrays MI Abouelhoda, S Kurtz, E Ohlebusch Journal of discrete algorithms 2 (1), 53-86, 2004 | 999 | 2004 |
Advanced topics in term rewriting E Ohlebusch Springer Science & Business Media, 2002 | 403 | 2002 |
Efficient multiple genome alignment M Höhl, S Kurtz, E Ohlebusch Bioinformatics 18 (suppl_1), S312-S320, 2002 | 256 | 2002 |
The enhanced suffix array and its applications to genome analysis MI Abouelhoda, S Kurtz, E Ohlebusch Algorithms in Bioinformatics: Second International Workshop, WABI 2002 Rome …, 2002 | 199 | 2002 |
Optimal exact string matching based on suffix arrays MI Abouelhoda, E Ohlebusch, S Kurtz String Processing and Information Retrieval: 9th International Symposium …, 2002 | 124 | 2002 |
Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic Reconstruction E Ohlebusch Oldenbusch Verlag, 2013 | 123 | 2013 |
An applications-focused review of comparative genomics tools: Capabilities, limitations and future challenges P Chain, S Kurtz, E Ohlebusch, T Slezak Briefings in bioinformatics 4 (2), 105-123, 2003 | 114 | 2003 |
Modular termination proofs for rewriting using dependency pairs J Giesl, T Arts, E Ohlebusch Journal of symbolic computation 34 (1), 21-58, 2002 | 104 | 2002 |
Modular Properties of Composable Term Rewriting Systems E Ohlebusch Dissertation, 1994 | 98 | 1994 |
Cst++ E Ohlebusch, J Fischer, S Gog String Processing and Information Retrieval: 17th International Symposium …, 2010 | 79 | 2010 |
Chaining algorithms for multiple genome comparison MI Abouelhoda, E Ohlebusch Journal of Discrete Algorithms 3 (2-4), 321-341, 2005 | 79 | 2005 |
On the modularity of termination of term rewriting systems E Ohlebusch Theoretical Computer Science 136 (2), 333-360, 1994 | 79 | 1994 |
Computation and visualization of degenerate repeats in complete genomes. S Kurtz, E Ohlebusch, C Schleiermacher, J Stoye, R Giegerich ISMB, 228-238, 2000 | 74 | 2000 |
Graphical pan-genome analysis with compressed suffix trees and the Burrows–Wheeler transform U Baier, T Beller, E Ohlebusch Bioinformatics 32 (4), 497-504, 2016 | 73 | 2016 |
Sorting by weighted reversals, transpositions, and inverted transpositions M Bader, E Ohlebusch Journal of Computational Biology 14 (5), 615-636, 2007 | 72 | 2007 |
Computing matching statistics and maximal exact matches on compressed full-text indexes E Ohlebusch, S Gog, A Kügel String Processing and Information Retrieval: 17th International Symposium …, 2010 | 66 | 2010 |
Termination of logic programs: Transformational methods revisited E Ohlebusch Applicable Algebra in Engineering, Communication and Computing 12, 73-116, 2001 | 65 | 2001 |
Computing the longest common prefix array based on the Burrows–Wheeler transform T Beller, S Gog, E Ohlebusch, T Schnattinger Journal of Discrete Algorithms 18, 22-31, 2013 | 61 | 2013 |
Lempel-Ziv factorization revisited E Ohlebusch, S Gog Annual Symposium on Combinatorial Pattern Matching, 15-26, 2011 | 60 | 2011 |