nnu-net: Self-adapting framework for u-net-based medical image segmentation F Isensee, J Petersen, A Klein, D Zimmerer, PF Jaeger, S Kohl, ... arXiv preprint arXiv:1809.10486, 2018 | 975 | 2018 |
TotalSegmentator: robust segmentation of 104 anatomic structures in CT images J Wasserthal, HC Breit, MT Meyer, M Pradella, D Hinck, AW Sauter, ... Radiology: Artificial Intelligence 5 (5), 2023 | 530 | 2023 |
TractSeg-Fast and accurate white matter tract segmentation J Wasserthal, P Neher, KH Maier-Hein NeuroImage 183, 239-253, 2018 | 523 | 2018 |
Combined tract segmentation and orientation mapping for bundle-specific tractography J Wasserthal, PF Neher, D Hirjak, KH Maier-Hein Medical image analysis 58, 101559, 2019 | 172 | 2019 |
Multiparametric mapping of white matter microstructure in catatonia J Wasserthal, KH Maier-Hein, PF Neher, G Northoff, KM Kubera, S Fritze, ... Neuropsychopharmacology 45 (10), 1750-1757, 2020 | 66 | 2020 |
Tractography reproducibility challenge with empirical data (TraCED): the 2017 ISMRM diffusion study group challenge V Nath, KG Schilling, P Parvathaneni, Y Huo, JA Blaber, AE Hainline, ... Journal of Magnetic Resonance Imaging 51 (1), 234-249, 2020 | 50 | 2020 |
batchgenerators—a python framework for data augmentation F Isensee, P Jäger, J Wasserthal, D Zimmerer, J Petersen, S Kohl, ... Zenodo 3632567, 2020 | 47 | 2020 |
nnU-Net: self-adapting framework for U-Net-based medical image segmentation. 2018 F Isensee, J Petersen, A Klein, D Zimmerer, PF Jaeger, S Kohl, ... arXiv preprint arXiv:1809.10486, 1809 | 30 | 1809 |
Potential of stroke imaging using a new prototype of low-field MRI: a prospective direct 0.55 T/1.5 T scanner comparison T Rusche, HC Breit, M Bach, J Wasserthal, J Gehweiler, S Manneck, ... Journal of Clinical Medicine 11 (10), 2798, 2022 | 23 | 2022 |
MedShapeNet--A large-scale dataset of 3D medical shapes for computer vision J Li, Z Zhou, J Yang, A Pepe, C Gsaxner, G Luijten, C Qu, T Zhang, ... arXiv preprint arXiv:2308.16139, 2023 | 18 | 2023 |
Automated detection of pancreatic cystic lesions on CT using deep learning L Abel, J Wasserthal, T Weikert, AW Sauter, I Nesic, M Obradovic, S Yang, ... Diagnostics 11 (5), 901, 2021 | 18 | 2021 |
batchgenerators-a python framework for data augmentation (2020) F Isensee, P Jäger, J Wasserthal, D Zimmerer, J Petersen, S Kohl, ... DOI: https://doi. org/10.5281/zenodo 3632567, 2020 | 15 | 2020 |
Differentiating axonal loss and demyelination in chronic MS lesions: a novel approach using single streamline diffusivity analysis S Klistorner, MH Barnett, J Wasserthal, C Yiannikas, J Barton, J Parratt, ... PLoS One 16 (1), e0244766, 2021 | 11 | 2021 |
White matter microstructure alterations in cortico-striatal networks are associated with parkinsonism in schizophrenia spectrum disorders J Wasserthal, KH Maier-Hein, PF Neher, RC Wolf, G Northoff, ... European Neuropsychopharmacology 50, 64-74, 2021 | 8 | 2021 |
Direct white matter bundle segmentation using stacked u-nets J Wasserthal, PF Neher, F Isensee, KH Maier-Hein arXiv preprint arXiv:1703.02036, 2017 | 8 | 2017 |
Pulmonary transit time of cardiovascular magnetic resonance perfusion scans for quantification of cardiopulmonary haemodynamics M Segeroth, DJ Winkel, I Strebel, S Yang, JG van der Stouwe, ... European Heart Journal-Cardiovascular Imaging 24 (8), 1062-1071, 2023 | 7 | 2023 |
Deep Anatomical Federated Network (Dafne): an open client/server framework for the continuous collaborative improvement of deep-learning-based medical image segmentation F Santini, J Wasserthal, A Agosti, X Deligianni, KR Keene, HE Kan, ... arXiv preprint arXiv:2302.06352, 2023 | 7 | 2023 |
Machine learning for onset prediction of patients with intracerebral hemorrhage T Rusche, J Wasserthal, HC Breit, U Fischer, R Guzman, J Fiehler, ... Journal of Clinical Medicine 12 (7), 2631, 2023 | 4 | 2023 |
Prospective assessment of cerebral microbleeds with low-field magnetic resonance imaging (0.55 Tesla MRI) T Rusche, HC Breit, M Bach, J Wasserthal, J Gehweiler, S Manneck, ... Journal of Clinical Medicine 12 (3), 1179, 2023 | 4 | 2023 |
Development and Evaluation of Deep Learning Models for Automated Estimation of Myelin Maturation Using Pediatric Brain MRI Scans T Akinci D’Antonoli, RA Todea, N Leu, AN Datta, B Stieltjes, F Pruefer, ... Radiology: Artificial Intelligence 5 (5), e220292, 2023 | 3 | 2023 |