GPU Computing with Python: Performance, Energy Efficiency and Usability HH Holm, AR Brodtkorb, ML Sætra Computation 8 (1), 4, 2020 | 23 | 2020 |
CloudFlow-an infrastructure for engineering workflows in the cloud HH Holm, JM Hjelmervik, V Gezer The tenth international conference on mobile ubiquitous computing, systems …, 2016 | 9 | 2016 |
Massively parallel implicit equal-weights particle filter for ocean drift trajectory forecasting HH Holm, ML Sætra, PJ Van Leeuwen Journal of Computational Physics: X 6, 100053, 2020 | 8 | 2020 |
Evaluation of selected finite-difference and finite-volume approaches to rotational shallow-water flow HH Holm, AR Brodtkorb, G Brostrøm, KH Christensen, ML Sætra Global Science Press, 2020 | 6 | 2020 |
Data Assimilation for Ocean Drift Trajectories Using Massive Ensembles and GPUs HH Holm, ML Sætra, AR Brodtkorb International Conference on Finite Volumes for Complex Applications, 715-723, 2020 | 3 | 2020 |
Efficient Forecasting of Drift Trajectories using Simplified Ocean Models and Nonlinear Data Assimilation on GPUs HH Holm NTNU, 2020 | 1 | 2020 |
Real-World Oceanographic Simulations on the GPU using a Two-Dimensional Finite-Volume Scheme AR Brodtkorb, HH Holm arXiv preprint arXiv:1912.02457, 2019 | 1 | 2019 |
The CloudFlow Infrastructure for Multi-Vendor Engineering Workflows: Concept and Validation HH Holm, V Gezer, S Hermawati, C Altenhofen, JM Hjelmervik International Journal on Advances in Internet Technology 10 (1), 2017 | 1 | 2017 |
A CUDA Back-End for the Equelle Compiler. HH Holm Institutt for matematiske fag, 2014 | 1 | 2014 |