Follow
Yuval Tassa
Yuval Tassa
Senior Research Scientist, Google DeepMind
Verified email at google.com - Homepage
Title
Cited by
Cited by
Year
Continuous control with deep reinforcement learning
TP Lillicrap
arXiv preprint arXiv:1509.02971, 2015
169662015
MuJoCo: A physics engine for model-based control
E Todorov, T Erez, Y Tassa
IROS, 2012
59992012
Emergence of locomotion behaviours in rich environments
N Heess, D Tb, S Sriram, J Lemmon, J Merel, G Wayne, Y Tassa, T Erez, ...
arXiv preprint arXiv:1707.02286, 2017
11232017
Synthesis and Stabilization of Complex Behaviors through Online Trajectory Optimization
Y Tassa, T Erez, E Todorov
IROS 2012, 2012
9912012
Learning continuous control policies by stochastic value gradients
N Heess, G Wayne, D Silver, T Lillicrap, T Erez, Y Tassa
Advances in neural information processing systems 28, 2015
6762015
Deepmind control suite
Y Tassa, Y Doron, A Muldal, T Erez, Y Li, DL Casas, D Budden, ...
arXiv preprint arXiv:1801.00690, 2018
6152018
Attend, infer, repeat: Fast scene understanding with generative models
SM Eslami, N Heess, T Weber, Y Tassa, D Szepesvari, GE Hinton
Advances in neural information processing systems 29, 2016
5952016
Control-limited differential dynamic programming
Y Tassa, N Mansard, E Todorov
2014 IEEE International Conference on Robotics and Automation (ICRA), 1168-1175, 2014
5722014
Continuous control with deep reinforcement learning. arXiv 2015
TP Lillicrap, JJ Hunt, A Pritzel, N Heess, T Erez, Y Tassa, D Silver, ...
arXiv preprint arXiv:1509.02971, 1935
5631935
Diego de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite
Y Tassa, Y Doron, A Muldal, T Erez, Y Li
arXiv preprint arXiv:1801.00690 2 (6), 7, 2018
528*2018
Maximum a posteriori policy optimisation
A Abdolmaleki, JT Springenberg, Y Tassa, R Munos, N Heess, ...
arXiv preprint arXiv:1806.06920, 2018
5152018
Safe exploration in continuous action spaces
G Dalal, K Dvijotham, M Vecerik, T Hester, C Paduraru, Y Tassa
arXiv preprint arXiv:1801.08757, 2018
5062018
Simulation Tools for Model-Based Robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX
T Erez, Y Tassa, E Todorov
ICRA 2015, 0
407*
dm_control: Software and tasks for continuous control
S Tunyasuvunakool, A Muldal, Y Doron, S Liu, S Bohez, J Merel, T Erez, ...
Software Impacts 6, 100022, 2020
3552020
Data-efficient deep reinforcement learning for dexterous manipulation
I Popov, N Heess, T Lillicrap, R Hafner, G Barth-Maron, M Vecerik, ...
arXiv preprint arXiv:1704.03073, 2017
3172017
Whole-body model-predictive control applied to the HRP-2 humanoid
J Koenemann, A Del Prete, Y Tassa, E Todorov, O Stasse, M Bennewitz, ...
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2015
2632015
Learning human behaviors from motion capture by adversarial imitation
J Merel, Y Tassa, D TB, S Srinivasan, J Lemmon, Z Wang, G Wayne, ...
arXiv preprint arXiv:1707.02201, 2017
2372017
Learning and transfer of modulated locomotor controllers
N Heess, G Wayne, Y Tassa, T Lillicrap, M Riedmiller, D Silver
arXiv preprint arXiv:1610.05182, 2016
2262016
Language to rewards for robotic skill synthesis
W Yu, N Gileadi, C Fu, S Kirmani, KH Lee, MG Arenas, HTL Chiang, ...
arXiv preprint arXiv:2306.08647, 2023
1812023
An integrated system for real-time model predictive control of humanoid robots
T Erez, K Lowrey, Y Tassa, V Kumar, S Kolev, E Todorov
2013 13th IEEE-RAS International conference on humanoid robots (Humanoids …, 2013
1812013
The system can't perform the operation now. Try again later.
Articles 1–20