Almost sure well-posedness of the cubic nonlinear Schrödinger equation below J Colliander, T Oh | 184 | 2012 |

On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ^d, d≥ 3 Á Bényi, T Oh, O Pocovnicu Transactions of the American Mathematical Society, Series B 2 (1), 1-50, 2015 | 137 | 2015 |

Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS A Nahmod, T Oh, L Rey-Bellet, G Staffilani Journal of the European Mathematical Society, 2012 | 134 | 2012 |

Renormalization of the two-dimensional stochastic nonlinear wave equations M Gubinelli, H Koch, T Oh Transactions of the American Mathematical Society 370 (10), 7335-7359, 2018 | 115 | 2018 |

Solitons and Scattering for the Cubic–Quintic Nonlinear Schrödinger Equation on R Killip, T Oh, O Pocovnicu, M Vişan Archive for Rational Mechanics and Analysis 225, 469-548, 2017 | 103 | 2017 |

The Sobolev inequality on the torus revisited Á Bényi, T Oh Publicationes Mathematicae Debrecen 83 (3), 359, 2013 | 103 | 2013 |

Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on R3 T Oh, O Pocovnicu Journal de Mathématiques Pures et Appliquées 105 (3), 342-366, 2016 | 95 | 2016 |

Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS Á Bényi, T Oh, O Pocovnicu Excursions in Harmonic Analysis, Volume 4: The February Fourier Talks at the …, 2015 | 91 | 2015 |

Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation T Oh, N Tzvetkov Probability theory and related fields 169, 1121-1168, 2017 | 80 | 2017 |

Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS Z Guo, S Kwon, T Oh Communications in Mathematical Physics 322, 19-48, 2013 | 77 | 2013 |

Invariant Gibbs measures and as global well posedness for coupled KdV systems T Oh | 76 | 2009 |

A pedestrian approach to the invariant Gibbs measures for the 2-*d* defocusing nonlinear Schrödinger equationsT Oh, L Thomann Stochastics and Partial Differential Equations: Analysis and Computations 6 …, 2018 | 75 | 2018 |

A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces T Oh Funkcialaj Ekvacioj 60 (2), 259-277, 2017 | 73 | 2017 |

Non-Existence of Solutions for the Periodic Cubic NLS below Z Guo, T Oh International Mathematics Research Notices 2018 (6), 1656-1729, 2018 | 69 | 2018 |

Best constants for certain multilinear integral operators Á Bényi, CT Oh Journal of Inequalities and Applications 2006, 1-12, 2006 | 67 | 2006 |

Invariance of the Gibbs measure for the Schrödinger–Benjamin–Ono system T Oh SIAM journal on mathematical analysis 41 (6), 2207-2225, 2010 | 63 | 2010 |

Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity M Gubinelli, H Koch, T Oh arXiv preprint arXiv:1811.07808, 2018 | 62 | 2018 |

Global dynamics for the two-dimensional stochastic nonlinear wave equations M Gubinelli, H Koch, T Oh, L Tolomeo International Mathematics Research Notices 2022 (21), 16954-16999, 2022 | 61 | 2022 |

Modulation spaces, Wiener amalgam spaces, and Brownian motions Á Bényi, T Oh Advances in Mathematics 228 (5), 2943-2981, 2011 | 61 | 2011 |

On unconditional well-posedness of modified KdV S Kwon, T Oh International Mathematics Research Notices 2012 (15), 3509-3534, 2012 | 60 | 2012 |