Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes GI Montecinos, LO Müller, EF Toro Journal of Computational Physics 266, 101-123, 2014 | 84 | 2014 |
Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms G Montecinos, CE Castro, M Dumbser, EF Toro Journal of Computational Physics 231 (19), 6472-6494, 2012 | 78 | 2012 |
Advection-diffusion-reaction equations: hyperbolization and high-order ADER discretizations EF Toro, GI Montecinos SIAM Journal on Scientific Computing 36 (5), A2423-A2457, 2014 | 65 | 2014 |
Reformulations for general advection–diffusion–reaction equations and locally implicit ADER schemes GI Montecinos, EF Toro Journal of Computational Physics 275, 415-442, 2014 | 57 | 2014 |
Assessment of reduced‐order unscented Kalman filter for parameter identification in 1‐dimensional blood flow models using experimental data A Caiazzo, F Caforio, G Montecinos, LO Muller, PJ Blanco, EF Toro International journal for numerical methods in biomedical engineering 33 (8 …, 2017 | 50 | 2017 |
Implicit, semi-analytical solution of the generalized Riemann problem for stiff hyperbolic balance laws EF Toro, GI Montecinos Journal of Computational Physics 303, 146-172, 2015 | 38 | 2015 |
Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf B Barraza, F Olate-Moya, G Montecinos, JH Ortega, A Rosenkranz, ... Science and Technology of Advanced Materials 23 (1), 300-321, 2022 | 34 | 2022 |
Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution – Part II, higher order FVTD schemes DS Balsara, S Garain, A Taflove, G Montecinos Journal of Computational Physics 354, 613 - 645, 2018 | 34 | 2018 |
Computational haemodynamics in stenotic internal jugular veins A Caiazzo, G Montecinos, LO Müller, EM Haacke, EF Toro Journal of mathematical biology 70, 745-772, 2015 | 30 | 2015 |
An efficient, second order accurate, universal generalized Riemann problem solver based on the HLLI Riemann solver DS Balsara, J Li, GI Montecinos Journal of Computational Physics 375, 1238-1269, 2018 | 28 | 2018 |
Junction-generalized Riemann problem for stiff hyperbolic balance laws in networks: an implicit solver and ADER schemes C Contarino, EF Toro, GI Montecinos, R Borsche, J Kall Journal of Computational Physics 315, 409-433, 2016 | 24 | 2016 |
ADER methods for hyperbolic equations with a time-reconstruction solver for the generalized Riemann problem: the scalar case R Dematté, VA Titarev, GI Montecinos, EF Toro Communications on Applied Mathematics and Computation 2, 369-402, 2020 | 20 | 2020 |
Exploring various flux vector splittings for the magnetohydrodynamic system DS Balsara, GI Montecinos, EF Toro Journal of Computational Physics 311, 1-21, 2016 | 20 | 2016 |
Some issues in modelling venous haemodynamics LO Müller, GI Montecinos, EF Toro Numerical Methods for Hyperbolic Equations: Theory and Applications. An …, 2012 | 17 | 2012 |
AENO: a novel reconstruction method in conjunction with ADER schemes for hyperbolic equations EF Toro, A Santacá, GI Montecinos, M Celant, LO Müller Communications on Applied Mathematics and Computation 5 (2), 776-852, 2023 | 12 | 2023 |
A simplified Cauchy-Kowalewskaya procedure for the local implicit solution of generalized Riemann problems of hyperbolic balance laws GI Montecinos, DS Balsara Computers & Fluids 202, 104490, 2020 | 12 | 2020 |
ADER scheme with a simplified solver for the generalized Riemann problem and an average ENO reconstruction procedure. Application to blood flow GI Montecinos, A Santacá, M Celant, LO Müller, EF Toro Computers & Fluids 248, 105685, 2022 | 9 | 2022 |
An ADER-type scheme for a class of equations arising from the water-wave theory GI Montecinos, JC López-Rios, R Lecaros, JH Ortega, EF Toro Computers & Fluids 132, 76-93, 2016 | 9 | 2016 |
Solver for the generalized Riemann problem for balance laws with stiff source terms: the scalar case G Montecinos, E Toro Hyperbolic Problems: Theory, Numerics and Applications (In 2 Volumes), 576-583, 2012 | 8 | 2012 |
The ADER approach for approximating hyperbolic equations to very high accuracy EF Toro, V Titarev, M Dumbser, A Iske, CR Goetz, CE Castro, ... XVI International Conference on Hyperbolic Problems: Theory, Numerics …, 2022 | 6 | 2022 |