A Comparison of String Distance Metrics for Name-Matching Tasks. WW Cohen, P Ravikumar, SE Fienberg IIWeb 3, 73-78, 2003 | 1821 | 2003 |
A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers S Negahban, P Ravikumar, MJ Wainwright, B Yu Statistical Science 27 (4), 538-557, 2012 | 1142 | 2012 |
High-dimensional Ising model selection using ℓ1-regularized logistic regression P Ravikumar, MJ Wainwright, JD Lafferty The Annals of Statistics 38 (3), 1287-1319, 2010 | 937 | 2010 |
High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence P Ravikumar, MJ Wainwright, G Raskutti, B Yu Electronic Journal of Statistics 5, 935-980, 2011 | 770 | 2011 |
A comparison of string metrics for matching names and records W Cohen, P Ravikumar, S Fienberg Workshop on Data Cleaning, Record Linkage, and Object Consolidation at Int …, 2003 | 736 | 2003 |
Adaptive name matching in information integration M Bilenko, R Mooney, W Cohen, P Ravikumar, S Fienberg Intelligent Systems, IEEE 18 (5), 16-23, 2003 | 698 | 2003 |
Learning with noisy labels N Natarajan, I Dhillon, P Ravikumar, A Tewari Advances in Neural Information Processing Systems (NIPS) 26, 1196-1204, 2013 | 644 | 2013 |
Sparse additive models P Ravikumar, J Lafferty, H Liu, L Wasserman Journal of the Royal Statistical Society: Series B (Statistical Methodology …, 2009 | 618 | 2009 |
A dirty model for multi-task learning A Jalali, P Ravikumar, S Sanghavi, C Ruan Advances in Neural Information Processing Systems (NIPS) 23, 964-972, 2010 | 390 | 2010 |
Sparse inverse covariance matrix estimation using quadratic approximation CJ Hsieh, IS Dhillon, P Ravikumar, MA Sustik Advances in Neural Information Processing Systems (NIPS) 24, 2330-2338, 2011 | 369 | 2011 |
Information-theoretic lower bounds on the oracle complexity of convex optimization A Agarwal, MJ Wainwright, PL Bartlett, P Ravikumar IEEE Transactions on Information Theory 58 (5), 3235-3249, 2012 | 324 | 2012 |
High-Dimensional Graphical Model Selection Using -Regularized Logistic Regression MJ Wainwright, JD Lafferty, PK Ravikumar Advances in neural information processing systems, 1465-1472, 2007 | 230 | 2007 |
BIG & QUIC: Sparse inverse covariance estimation for a million variables CJ Hsieh, MA Sustik, I Dhillon, P Ravikumar, R Poldrack Advances in Neural Information Processing Systems (NIPS) 26, 3165-3173, 2013 | 186 | 2013 |
Collaborative Filtering with Graph Information: Consistency and Scalable Methods. N Rao, HF Yu, P Ravikumar, IS Dhillon NIPS 2 (4), 7, 2015 | 179 | 2015 |
QUIC: quadratic approximation for sparse inverse covariance estimation. CJ Hsieh, MA Sustik, IS Dhillon, P Ravikumar J. Mach. Learn. Res. 15 (1), 2911-2947, 2014 | 151 | 2014 |
Graphical models via generalized linear models E Yang, P Ravikumar, GI Allen, Z Liu Advances in Neural Information Processing Systems (NIPS) 25, 1358-1366, 2012 | 147 | 2012 |
Quadratic programming relaxations for metric labeling and markov random field map estimation P Ravikumar, J Lafferty International Conference on Machine Learning (ICML) 23, 737-744, 2006 | 144 | 2006 |
A hierarchical graphical model for record linkage P Ravikumar, WW Cohen Uncertainty in Artificial Intelligence (UAI) 20, 454-461, 2004 | 139* | 2004 |
Pd-sparse: A primal and dual sparse approach to extreme multiclass and multilabel classification IEH Yen, X Huang, P Ravikumar, K Zhong, I Dhillon International Conference on Machine Learning, 3069-3077, 2016 | 132 | 2016 |
Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of\ boldmath -regularized MLE G Raskutti, B Yu, MJ Wainwright, PK Ravikumar Advances in Neural Information Processing Systems (NIPS) 21, 1329-1336, 2008 | 128* | 2008 |