MIMIC-III, a freely accessible critical care database AEW Johnson, TJ Pollard, L Shen, LH Lehman, M Feng, M Ghassemi, ... Scientific data 3 (1), 1-9, 2016 | 7499 | 2016 |
Machine learning and decision support in critical care AEW Johnson, MM Ghassemi, S Nemati, KE Niehaus, DA Clifton, ... Proceedings of the IEEE 104 (2), 444-466, 2016 | 419 | 2016 |
Detecting Depression with Audio/Text Sequence Modeling of Interviews. T Al Hanai, MM Ghassemi, JR Glass Interspeech, 1716-1720, 2018 | 298 | 2018 |
Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach S Nemati, MM Ghassemi, GD Clifford 2016 38th annual international conference of the IEEE engineering in …, 2016 | 222 | 2016 |
MIMIC-III, a freely accessible critical care database Sci AE Johnson, TJ Pollard, L Shen, LH Lehman, M Feng, M Ghassemi, ... Data 3 (1), 1, 2016 | 198 | 2016 |
You snooze, you win: the physionet/computing in cardiology challenge 2018 MM Ghassemi, BE Moody, LWH Lehman, C Song, Q Li, H Sun, RG Mark, ... 2018 Computing in Cardiology Conference (CinC) 45, 1-4, 2018 | 180 | 2018 |
Monitoring and detecting atrial fibrillation using wearable technology S Nemati, MM Ghassemi, V Ambai, N Isakadze, O Levantsevych, A Shah, ... 2016 38th Annual International Conference of the IEEE Engineering in …, 2016 | 160 | 2016 |
MIMIC-III, a freely accessible critical care database. Sci Data. 2016; 3: 160035 AE Johnson, TJ Pollard, L Shen, LW Lehman, M Feng, M Ghassemi, ... PubMed: https://pubmed. ncbi. nlm. nih. gov/27219127, 2016 | 97 | 2016 |
Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury E Amorim, M Van der Stoel, SB Nagaraj, MM Ghassemi, J Jing, ... Clinical neurophysiology 130 (10), 1908-1916, 2019 | 82 | 2019 |
A data-driven approach to optimized medication dosing: a focus on heparin MM Ghassemi, SE Richter, IM Eche, TW Chen, J Danziger, LA Celi Intensive care medicine 40, 1332-1339, 2014 | 81 | 2014 |
A “datathon” model to support cross-disciplinary collaboration J Aboab, LA Celi, P Charlton, M Feng, M Ghassemi, DC Marshall, ... Science Translational Medicine 8 (333), 333ps8-333ps8, 2016 | 79 | 2016 |
Development of an EMG-controlled serious game for rehabilitation M Ghassemi, K Triandafilou, A Barry, ME Stoykov, E Roth, ... IEEE Transactions on Neural Systems and Rehabilitation Engineering 27 (2 …, 2019 | 74 | 2019 |
Cognitive tomography reveals complex, task-independent mental representations NMT Houlsby, F Huszár, MM Ghassemi, G Orbán, DM Wolpert, M Lengyel Current Biology 23 (21), 2169-2175, 2013 | 67 | 2013 |
A repository of corpora for summarization F Dernoncourt, M Ghassemi, W Chang Proceedings of the eleventh international conference on language resources …, 2018 | 55 | 2018 |
Predicting neurological recovery from coma after cardiac arrest: The George B. Moody PhysioNet Challenge 2023 MA Reyna, E Amorim, R Sameni, J Weigle, A Elola, AB Rad, S Seyedi, ... 2023 Computing in Cardiology (CinC) 50, 1-4, 2023 | 54 | 2023 |
Estimating the false positive rate of absent somatosensory evoked potentials in cardiac arrest prognostication E Amorim, MM Ghassemi, JW Lee, DM Greer, PW Kaplan, AJ Cole, ... Critical care medicine 46 (12), e1213-e1221, 2018 | 54 | 2018 |
The international cardiac arrest research consortium electroencephalography database E Amorim, WL Zheng, MM Ghassemi, M Aghaeeaval, P Kandhare, ... Critical Care Medicine 51 (12), 1802-1811, 2023 | 53 | 2023 |
Unsupervised EEG artifact detection and correction S Saba-Sadiya, E Chantland, T Alhanai, T Liu, MM Ghassemi Frontiers in digital health 2, 608920, 2021 | 40 | 2021 |
Predicting latent narrative mood using audio and physiologic data T AlHanai, M Ghassemi Proceedings of the AAAI Conference on Artificial Intelligence 31 (1), 2017 | 38 | 2017 |
Predicting neurological outcome in comatose patients after cardiac arrest with multiscale deep neural networks WL Zheng, E Amorim, J Jing, W Ge, S Hong, O Wu, M Ghassemi, JW Lee, ... Resuscitation 169, 86-94, 2021 | 37 | 2021 |