Follow
Johannes Welbl
Johannes Welbl
Research Scientist, Google DeepMind
Verified email at google.com
Title
Cited by
Cited by
Year
Complex embeddings for simple link prediction
T Trouillon, J Welbl, S Riedel, É Gaussier, G Bouchard
International conference on machine learning, 2071-2080, 2016
35652016
Training compute-optimal large language models
J Hoffmann, S Borgeaud, A Mensch, E Buchatskaya, T Cai, E Rutherford, ...
arXiv preprint arXiv:2203.15556, 2022
13872022
Scaling language models: Methods, analysis & insights from training gopher
JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ...
arXiv preprint arXiv:2112.11446, 2021
9452021
Competition-level code generation with alphacode
Y Li, D Choi, J Chung, N Kushman, J Schrittwieser, R Leblond, T Eccles, ...
Science 378 (6624), 1092-1097, 2022
8742022
Constructing datasets for multi-hop reading comprehension across documents
J Welbl, P Stenetorp, S Riedel
Transactions of the Association for Computational Linguistics 6, 287-302, 2018
5642018
Knowledge graph completion via complex tensor factorization
T Trouillon, CR Dance, É Gaussier, J Welbl, S Riedel, G Bouchard
Journal of Machine Learning Research 18 (130), 1-38, 2017
3342017
Crowdsourcing multiple choice science questions
J Welbl, NF Liu, M Gardner
arXiv preprint arXiv:1707.06209, 2017
2912017
Challenges in detoxifying language models
J Welbl, A Glaese, J Uesato, S Dathathri, J Mellor, LA Hendricks, ...
arXiv preprint arXiv:2109.07445, 2021
1982021
Reducing sentiment bias in language models via counterfactual evaluation
PS Huang, H Zhang, R Jiang, R Stanforth, J Welbl, J Rae, V Maini, ...
arXiv preprint arXiv:1911.03064, 2019
1902019
Achieving verified robustness to symbol substitutions via interval bound propagation
PS Huang, R Stanforth, J Welbl, C Dyer, D Yogatama, S Gowal, ...
arXiv preprint arXiv:1909.01492, 2019
1812019
Beat the AI: Investigating adversarial human annotation for reading comprehension
M Bartolo, A Roberts, J Welbl, S Riedel, P Stenetorp
Transactions of the Association for Computational Linguistics 8, 662-678, 2020
1702020
Frustratingly short attention spans in neural language modeling
M Daniluk, T Rocktäschel, J Welbl, S Riedel
arXiv preprint arXiv:1702.04521, 2017
1482017
Neural random forests
G Biau, E Scornet, J Welbl
Sankhya A 81 (2), 347-386, 2019
1352019
An empirical analysis of compute-optimal large language model training
J Hoffmann, S Borgeaud, A Mensch, E Buchatskaya, T Cai, E Rutherford, ...
Advances in Neural Information Processing Systems 35, 30016-30030, 2022
1252022
Ucl machine reading group: Four factor framework for fact finding (hexaf)
T Yoneda, J Mitchell, J Welbl, P Stenetorp, S Riedel
Proceedings of the First Workshop on Fact Extraction and VERification (FEVER …, 2018
1202018
Cyprien de Masson d’Autume
JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ...
952021
Making sense of sensory input
R Evans, J Hernández-Orallo, J Welbl, P Kohli, M Sergot
Artificial Intelligence 293, 103438, 2021
652021
Cyprien de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew J
JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, HF Song, J Aslanides, ...
Johnson, Blake A. Hechtman, Laura Weidinger, Iason Gabriel, William S. Isaac …, 2021
642021
Casting random forests as artificial neural networks (and profiting from it)
J Welbl
German Conference on Pattern Recognition, 765-771, 2014
482014
Characteristics of harmful text: Towards rigorous benchmarking of language models
M Rauh, J Mellor, J Uesato, PS Huang, J Welbl, L Weidinger, S Dathathri, ...
Advances in Neural Information Processing Systems 35, 24720-24739, 2022
392022
The system can't perform the operation now. Try again later.
Articles 1–20