Do as i can, not as i say: Grounding language in robotic affordances M Ahn, A Brohan, N Brown, Y Chebotar, O Cortes, B David, C Finn, C Fu, ... arXiv preprint arXiv:2204.01691, 2022 | 1118 | 2022 |
Rt-2: Vision-language-action models transfer web knowledge to robotic control A Brohan, N Brown, J Carbajal, Y Chebotar, X Chen, K Choromanski, ... arXiv preprint arXiv:2307.15818, 2023 | 463 | 2023 |
Do as i can, not as i say: Grounding language in robotic affordances A Brohan, Y Chebotar, C Finn, K Hausman, A Herzog, D Ho, J Ibarz, ... Conference on robot learning, 287-318, 2023 | 338 | 2023 |
Drucker-prager elastoplasticity for sand animation G Klár, T Gast, A Pradhana, C Fu, C Schroeder, C Jiang, J Teran ACM Transactions on Graphics (TOG) 35 (4), 1-12, 2016 | 187 | 2016 |
Language to rewards for robotic skill synthesis W Yu, N Gileadi, C Fu, S Kirmani, KH Lee, MG Arenas, HTL Chiang, ... arXiv preprint arXiv:2306.08647, 2023 | 181 | 2023 |
Open x-embodiment: Robotic learning datasets and rt-x models A Padalkar, A Pooley, A Jain, A Bewley, A Herzog, A Irpan, A Khazatsky, ... arXiv preprint arXiv:2310.08864, 2023 | 166 | 2023 |
Multi-species simulation of porous sand and water mixtures AP Tampubolon, T Gast, G Klár, C Fu, J Teran, C Jiang, K Museth ACM Transactions on Graphics (TOG) 36 (4), 1-11, 2017 | 146 | 2017 |
A polynomial particle-in-cell method C Fu, Q Guo, T Gast, C Jiang, J Teran ACM Transactions on Graphics (TOG) 36 (6), 1-12, 2017 | 134 | 2017 |
Rt-2: Vision-language-action models transfer web knowledge to robotic control B Zitkovich, T Yu, S Xu, P Xu, T Xiao, F Xia, J Wu, P Wohlhart, S Welker, ... Conference on Robot Learning, 2165-2183, 2023 | 99 | 2023 |
Jump-start reinforcement learning I Uchendu, T Xiao, Y Lu, B Zhu, M Yan, J Simon, M Bennice, C Fu, C Ma, ... International Conference on Machine Learning, 34556-34583, 2023 | 94 | 2023 |
A material point method for thin shells with frictional contact Q Guo, X Han, C Fu, T Gast, R Tamstorf, J Teran ACM Transactions on Graphics (TOG) 37 (4), 1-15, 2018 | 65 | 2018 |
Open X-Embodiment: Robotic learning datasets and RT-X models OXE Collaboration, A Padalkar, A Pooley, A Jain, A Bewley, A Herzog, ... arXiv preprint arXiv:2310.08864, 2023 | 30 | 2023 |
Deep rl at scale: Sorting waste in office buildings with a fleet of mobile manipulators A Herzog, K Rao, K Hausman, Y Lu, P Wohlhart, M Yan, J Lin, MG Arenas, ... arXiv preprint arXiv:2305.03270, 2023 | 24 | 2023 |
Rt-trajectory: Robotic task generalization via hindsight trajectory sketches J Gu, S Kirmani, P Wohlhart, Y Lu, MG Arenas, K Rao, W Yu, C Fu, ... arXiv preprint arXiv:2311.01977, 2023 | 14 | 2023 |
Open x-embodiment: Robotic learning datasets and RT-x models Q Vuong, S Levine, HR Walke, K Pertsch, A Singh, R Doshi, C Xu, J Luo, ... Towards Generalist Robots: Learning Paradigms for Scalable Skill Acquisition …, 2023 | 14 | 2023 |
Cocoi: contact-aware online context inference for generalizable non-planar pushing Z Xu, W Yu, A Herzog, W Lu, C Fu, M Tomizuka, Y Bai, CK Liu, D Ho 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2021 | 14 | 2021 |
Implicit-shifted symmetric QR singular value decomposition of 3× 3 matrices T Gast, C Fu, C Jiang, J Teran Technical report, 2016 | 9 | 2016 |
Open X-Embodiment: Robotic Learning Datasets and RT-X Models : Open X-Embodiment Collaboration0 A O’Neill, A Rehman, A Maddukuri, A Gupta, A Padalkar, A Lee, A Pooley, ... 2024 IEEE International Conference on Robotics and Automation (ICRA), 6892-6903, 2024 | 3 | 2024 |
Evaluating Real-World Robot Manipulation Policies in Simulation X Li, K Hsu, J Gu, K Pertsch, O Mees, HR Walke, C Fu, I Lunawat, I Sieh, ... arXiv preprint arXiv:2405.05941, 2024 | 3 | 2024 |
Midas: A multi-joint robotics simulator with intersection-free frictional contact Y Chen, M Li, W Lu, C Fu, C Jiang arXiv e-prints, arXiv: 2210.00130, 2022 | 3 | 2022 |