Dirk Praetorius
Dirk Praetorius
Professor of Numerics of PDEs, TU Wien
Verified email at asc.tuwien.ac.at - Homepage
Cited by
Cited by
Axioms of adaptivity
C Carstensen, M Feischl, M Page, D Praetorius
Computers & Mathematics with Applications 67 (6), 1195-1253, 2014
Efficient implementation of adaptive P1-FEM in Matlab
S Funken, D Praetorius, P Wissgott
Computational Methods in Applied Mathematics 11 (4), 460-490, 2011
On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H 1-Stability of L 2-Projection
M Karkulik, D Pavlicek, D Praetorius
Constructive Approximation 38 (2), 213-234, 2013
Quasi-optimal convergence rate for an adaptive boundary element method
M Feischl, M Karkulik, JM Melenk, D Praetorius
SIAM Journal on Numerical Analysis 51 (2), 1327-1348, 2013
Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems
M Feischl, T Führer, D Praetorius
SIAM Journal on Numerical Analysis 52 (2), 601-625, 2014
Simple a posteriori error estimators for the h-version of the boundary element method
S Ferraz-Leite, D Praetorius
Computing 83 (4), 135-162, 2008
Averaging techniques for the effective numerical solution of Symm's integral equation of the first kind
C Carstensen, D Praetorius
SIAM Journal on Scientific Computing 27 (4), 1226-1260, 2006
Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2
C Vogler, C Abert, F Bruckner, D Suess, D Praetorius
Applied Physics Letters 108 (10), 102406, 2016
Estimator reduction and convergence of adaptive BEM
M Aurada, S Ferraz-Leite, D Praetorius
Applied Numerical Mathematics 62 (6), 787-801, 2012
Residual-based a posteriori error estimate for hypersingular equation on surfaces
C Carstensen, M Maischak, D Praetorius, EP Stephan
Numerische Mathematik 97 (3), 397-425, 2004
Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity
M Aurada, M Feischl, T Führer, M Karkulik, JM Melenk, D Praetorius
Computational Mechanics 51 (4), 399-419, 2013
Energy norm based a posteriori error estimation for boundary element methods in two dimensions
C Erath, S Ferraz-Leite, S Funken, D Praetorius
Applied numerical mathematics 59 (11), 2713-2734, 2009
Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods
M Aurada, M Feischl, T Führer, M Karkulik, D Praetorius
Computational Methods in Applied Mathematics 13 (3), 305-332, 2013
An abstract analysis of optimal goal-oriented adaptivity
M Feischl, D Praetorius, KG Van der Zee
SIAM Journal on Numerical Analysis 54 (3), 1423-1448, 2016
Convergence of simple adaptive Galerkin schemes based on hh/2 error estimators
S Ferraz-Leite, C Ortner, D Praetorius
Numerische Mathematik 116 (2), 291-316, 2010
Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation
M Feischl, T Führer, M Karkulik, JM Melenk, D Praetorius
Calcolo 51 (4), 531-562, 2014
Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations
M Feischl, G Gantner, D Praetorius
Computer methods in applied mechanics and engineering 290, 362-386, 2015
A three-dimensional spin-diffusion model for micromagnetics
C Abert, M Ruggeri, F Bruckner, C Vogler, G Hrkac, D Praetorius, D Suess
Scientific reports 5 (1), 1-11, 2015
Adaptive boundary element methods
M Feischl, T Führer, N Heuer, M Karkulik, D Praetorius
Archives of Computational Methods in Engineering 22 (3), 309-389, 2015
Multiscale modeling in micromagnetics: Existence of solutions and numerical integration
F Bruckner, D Suess, M Feischl, T Führer, P Goldenits, M Page, ...
Mathematical Models and Methods in Applied Sciences 24 (13), 2627-2662, 2014
The system can't perform the operation now. Try again later.
Articles 1–20