Well-posedness and ill-posedness for the cubic fractional Schr\" odinger equations Y Cho, G Hwang, S Kwon, S Lee arXiv preprint arXiv:1311.0082, 2013 | 86 | 2013 |
Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS Z Guo, S Kwon, T Oh Communications in Mathematical Physics 322, 19-48, 2013 | 77 | 2013 |
On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map S Kwon Journal of Differential Equations 245 (9), 2627-2659, 2008 | 66 | 2008 |
On the mass-critical generalized KdV equation R Killip, S Kwon, S Shao, M Visan arXiv preprint arXiv:0907.5412, 2009 | 64 | 2009 |
On unconditional well-posedness of modified KdV S Kwon, T Oh International Mathematics Research Notices 2012 (15), 3509-3534, 2012 | 61 | 2012 |
On finite time blow-up for the mass-critical Hartree equations Y Cho, G Hwang, S Kwon, S Lee Proceedings of the Royal Society of Edinburgh Section A: Mathematics 145 (3 …, 2015 | 50 | 2015 |
Profile decompositions and blowup phenomena of mass critical fractional Schrödinger equations Y Cho, G Hwang, S Kwon, S Lee Nonlinear Analysis: Theory, Methods & Applications 86, 12-29, 2013 | 49 | 2013 |
A remark on normal forms and the “upside-down” I-method for periodic NLS: Growth of higher Sobolev norms J Colliander, S Kwon, T Oh Journal d'Analyse Mathématique 118 (1), 55-82, 2012 | 47 | 2012 |
Orbital stability of solitary waves for derivative nonlinear Schrödinger equation S Kwon, Y Wu Journal d'Analyse Mathématique 135 (2), 473-486, 2018 | 43 | 2018 |
Rough solutions of the fifth-order KdV equations Z Guo, C Kwak, S Kwon Journal of Functional Analysis 265 (11), 2791-2829, 2013 | 40 | 2013 |
Well-posedness and ill-posedness of the fifth order modifed KdV equation S Kwon arXiv preprint arXiv:0711.1060, 2007 | 38 | 2007 |
Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line S Kwon, T Oh, H Yoon Annales de la Faculté des sciences de Toulouse: Mathématiques 29 (3), 649-720, 2020 | 32 | 2020 |
Modified scattering for the Vlasov–Poisson system SH Choi, S Kwon Nonlinearity 29 (9), 2755, 2016 | 20 | 2016 |
On pseudoconformal blow-up solutions to the self-dual Chern-Simons-Schrödinger equation: existence, uniqueness, and instability K Kim, S Kwon American Mathematical Society 284 (1409), 2023 | 13 | 2023 |
Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line S Kwon, T Oh, H Yoon arXiv preprint arXiv:1805.08410, 2018 | 13 | 2018 |
Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle J Chung, Z Guo, S Kwon, T Oh Annales de l'Institut Henri Poincaré C, Analyse non linéaire 34 (5), 1273-1297, 2017 | 13 | 2017 |
Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation K Kim, S Kwon Annals of PDE 9 (1), 6, 2023 | 9 | 2023 |
Nonsqueezing property of the coupled KdV type system without Miura transform S Hong, S Kwon arXiv preprint arXiv:1509.08114, 2015 | 9 | 2015 |
Profile decompositions of fractional Schrödinger equations with angularly regular data Y Cho, G Hwang, S Kwon, S Lee Journal of Differential Equations 256 (8), 3011-3037, 2014 | 9 | 2014 |
The modified scattering for Dirac equations of scattering-critical nonlinearity Y Cho, S Kwon, K Lee, C Yang Advances in Differential Equations 29 (3/4), 179-222, 2024 | 7 | 2024 |