Well-posedness and ill-posedness for the cubic fractional Schr\" odinger equations Y Cho, G Hwang, S Kwon, S Lee arXiv preprint arXiv:1311.0082, 2013 | 80 | 2013 |

Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS Z Guo, S Kwon, T Oh Communications in Mathematical Physics 322, 19-48, 2013 | 75 | 2013 |

On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map S Kwon Journal of Differential Equations 245 (9), 2627-2659, 2008 | 62 | 2008 |

On the mass-critical generalized KdV equation R Killip, S Kwon, S Shao, M Visan arXiv preprint arXiv:0907.5412, 2009 | 61 | 2009 |

On unconditional well-posedness of modified KdV S Kwon, T Oh International Mathematics Research Notices 2012 (15), 3509-3534, 2012 | 60 | 2012 |

Profile decompositions and blowup phenomena of mass critical fractional Schrödinger equations Y Cho, G Hwang, S Kwon, S Lee Nonlinear Analysis: Theory, Methods & Applications 86, 12-29, 2013 | 48 | 2013 |

On finite time blow-up for the mass-critical Hartree equations Y Cho, G Hwang, S Kwon, S Lee Proceedings of the Royal Society of Edinburgh Section A: Mathematics 145 (3 …, 2015 | 47 | 2015 |

A remark on normal forms and the “upside-down” *I*-method for periodic NLS: Growth of higher Sobolev normsJ Colliander, S Kwon, T Oh Journal d'Analyse Mathématique 118 (1), 55-82, 2012 | 46 | 2012 |

Orbital stability of solitary waves for derivative nonlinear Schrödinger equation S Kwon, Y Wu Journal d'Analyse Mathématique 135 (2), 473-486, 2018 | 42 | 2018 |

Rough solutions of the fifth-order KdV equations Z Guo, C Kwak, S Kwon Journal of Functional Analysis 265 (11), 2791-2829, 2013 | 38 | 2013 |

Well-posedness and ill-posedness of the fifth order modifed KdV equation S Kwon arXiv preprint arXiv:0711.1060, 2007 | 36 | 2007 |

Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line S Kwon, T Oh, H Yoon Annales de la Faculté des sciences de Toulouse: Mathématiques 29 (3), 649-720, 2020 | 31 | 2020 |

Modified scattering for the Vlasov–Poisson system SH Choi, S Kwon Nonlinearity 29 (9), 2755, 2016 | 16 | 2016 |

Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line S Kwon, T Oh, H Yoon arXiv preprint arXiv:1805.08410, 2018 | 13 | 2018 |

On pseudoconformal blow-up solutions to the self-dual Chern-Simons-Schrödinger equation: existence, uniqueness, and instability K Kim, S Kwon American Mathematical Society 284 (1409), 2023 | 11 | 2023 |

Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle J Chung, Z Guo, S Kwon, T Oh Annales de l'Institut Henri Poincaré C, Analyse non linéaire 34 (5), 1273-1297, 2017 | 11 | 2017 |

Nonsqueezing property of the coupled KdV type system without Miura transform S Hong, S Kwon arXiv preprint arXiv:1509.08114, 2015 | 9 | 2015 |

Profile decompositions of fractional Schrödinger equations with angularly regular data Y Cho, G Hwang, S Kwon, S Lee Journal of Differential Equations 256 (8), 3011-3037, 2014 | 8 | 2014 |

Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation K Kim, S Kwon Annals of PDE 9 (1), 6, 2023 | 7 | 2023 |

Global existence versus finite time blowup dichotomy for the system of nonlinear Schrödinger equations Y Hong, S Kwon, H Yoon Journal de Mathématiques Pures et Appliquées 125, 283-320, 2019 | 7 | 2019 |