Hyperbolic divergence cleaning for the MHD equations A Dedner, F Kemm, D Kröner, CD Munz, T Schnitzer, M Wesenberg Journal of Computational Physics 175 (2), 645-673, 2002 | 1387 | 2002 |

On Godunov-type methods near low densities B Einfeldt, CD Munz, PL Roe, B Sjögreen Journal of computational physics 92 (2), 273-295, 1991 | 1115 | 1991 |

A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes M Dumbser, DS Balsara, EF Toro, CD Munz Journal of Computational Physics 227 (18), 8209-8253, 2008 | 652 | 2008 |

Divergence correction techniques for Maxwell solvers based on a hyperbolic model CD Munz, P Omnes, R Schneider, E Sonnendrücker, U Voss Journal of Computational Physics 161 (2), 484-511, 2000 | 391 | 2000 |

Deep neural networks for data-driven LES closure models A Beck, D Flad, CD Munz Journal of Computational Physics 398, 108910, 2019 | 288 | 2019 |

Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics DS Balsara, T Rumpf, M Dumbser, CD Munz Journal of Computational Physics 228 (7), 2480-2516, 2009 | 276 | 2009 |

Explicit discontinuous Galerkin methods for unsteady problems F Hindenlang, GJ Gassner, C Altmann, A Beck, M Staudenmaier, ... Computers & Fluids 61, 86-93, 2012 | 257 | 2012 |

High‐order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations AD Beck, T Bolemann, D Flad, H Frank, GJ Gassner, F Hindenlang, ... International Journal for Numerical Methods in Fluids 76 (8), 522-548, 2014 | 245 | 2014 |

The extension of incompressible flow solvers to the weakly compressible regime CD Munz, S Roller, R Klein, KJ Geratz Computers & Fluids 32 (2), 173-196, 2003 | 222 | 2003 |

A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes G Gassner, F Lörcher, CD Munz Journal of Computational Physics 224 (2), 1049-1063, 2007 | 209 | 2007 |

Asymptotic adaptive methods for multi-scale problems in fluid mechanics R Klein, N Botta, T Schneider, CD Munz, S Roller, A Meister, L Hoffmann, ... Journal of Engineering Mathematics 39, 261-343, 2001 | 206 | 2001 |

New algorithms for ultra-relativistic numerical hydrodynamics V Schneider, U Katscher, DH Rischke, B Waldhauser, JA Maruhn, ... Journal of Computational Physics 105 (1), 92-107, 1993 | 205 | 1993 |

Building blocks for arbitrary high order discontinuous Galerkin schemes M Dumbser, CD Munz Journal of Scientific Computing 27, 215-230, 2006 | 202 | 2006 |

Numerical simulations of nonstationary fronts and interfaces by the Godunov method in moving grids VE Fortov, B Goel, CD Munz, AL Ni, AV Shutov, OY Vorobiev Nuclear science and engineering 123 (2), 169-189, 1996 | 188 | 1996 |

ADER: A high-order approach for linear hyperbolic systems in 2D T Schwartzkopff, CD Munz, EF Toro Journal of Scientific Computing 17, 231-240, 2002 | 176 | 2002 |

A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions G Gassner, F Lörcher, CD Munz Journal of Scientific Computing 34, 260-286, 2008 | 169 | 2008 |

Fast high order ADER schemes for linear hyperbolic equations T Schwartzkopff, M Dumbser, CD Munz Journal of Computational Physics 197 (2), 532-539, 2004 | 148 | 2004 |

ADER discontinuous Galerkin schemes for aeroacoustics M Dumbser, CD Munz Comptes Rendus Mécanique 333 (9), 683-687, 2005 | 130 | 2005 |

A discontinuous Galerkin scheme based on a space–time expansion. I. Inviscid compressible flow in one space dimension F Lörcher, G Gassner, CD Munz Journal of Scientific Computing 32, 175-199, 2007 | 123 | 2007 |

FLEXI: A high order discontinuous Galerkin framework for hyperbolic–parabolic conservation laws N Krais, A Beck, T Bolemann, H Frank, D Flad, G Gassner, F Hindenlang, ... Computers & Mathematics with Applications 81, 186-219, 2021 | 121 | 2021 |