Beyond the imitation game: Quantifying and extrapolating the capabilities of language models A Srivastava, A Rastogi, A Rao, AAM Shoeb, A Abid, A Fisch, AR Brown, ... arXiv preprint arXiv:2206.04615, 2022 | 1169 | 2022 |
Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning H Liu, D Tam, M Muqeeth, J Mohta, T Huang, M Bansal, CA Raffel Advances in Neural Information Processing Systems 35, 1950-1965, 2022 | 753 | 2022 |
An empirical survey of data augmentation for limited data learning in nlp J Chen, D Tam, C Raffel, M Bansal, D Yang Transactions of the Association for Computational Linguistics 11, 191-211, 2023 | 176 | 2023 |
Ties-merging: Resolving interference when merging models P Yadav, D Tam, L Choshen, CA Raffel, M Bansal Advances in Neural Information Processing Systems 36, 2024 | 160 | 2024 |
Improving and simplifying pattern exploiting training D Tam, RR Menon, M Bansal, S Srivastava, C Raffel arXiv preprint arXiv:2103.11955, 2021 | 153 | 2021 |
Evaluating the factual consistency of large language models through summarization D Tam, A Mascarenhas, S Zhang, S Kwan, M Bansal, C Raffel arXiv preprint arXiv:2211.08412, 2022 | 95 | 2022 |
Resolving interference when merging models P Yadav, D Tam, L Choshen, C Raffel, M Bansal arXiv preprint arXiv:2306.01708 1, 2023 | 56 | 2023 |
Optimal transport-based alignment of learned character representations for string similarity D Tam, N Monath, A Kobren, A Traylor, R Das, A McCallum arXiv preprint arXiv:1907.10165, 2019 | 18 | 2019 |
Isochrony-aware neural machine translation for automatic dubbing D Tam, SM Lakew, Y Virkar, P Mathur, M Federico arXiv preprint arXiv:2112.08548, 2021 | 13 | 2021 |
Merging by matching models in task subspaces D Tam, M Bansal, C Raffel arXiv preprint arXiv:2312.04339, 2023 | 9 | 2023 |
Merging by Matching Models in Task Parameter Subspaces D Tam, M Bansal, C Raffel Transactions on Machine Learning Research, 2024 | 6 | 2024 |
Simple Weakly-Supervised Image Captioning via CLIP's Multimodal Embeddings D Tam, C Raffel, M Bansal The AAAI-23 Workshop on Creative AI Across Modalities, 2023 | 4 | 2023 |
Llm merging: Building llms efficiently through merging D Tam, M Li, P Yadav, RB Gabrielsson, J Zhu, K Greenewald, ... NeurIPS 2024 Competition Track, 2024 | 2 | 2024 |
Predicting Institution Hierarchies with Set-based Models D Tam, N Monath, A Kobren, A McCallum Automated Knowledge Base Construction, 2020 | 1 | 2020 |
Realistic Evaluation of Model Merging for Compositional Generalization D Tam, Y Kant, B Lester, I Gilitschenski, C Raffel arXiv preprint arXiv:2409.18314, 2024 | | 2024 |
[TACL] An Empirical Survey of Data Augmentation for Limited Data Learning in NLP J Chen, D Tam, C Raffel, M Bansal, D Yang The 61st Annual Meeting Of The Association For Computational Linguistics, 2023 | | 2023 |