Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces O Dragičević, L Grafakos, MC Pereyra, S Petermichl Publicacions Matematiques, 73-91, 2005 | 168 | 2005 |

Data-driven and optimal denoising of a signal and recovery of its derivative using multiwavelets S Efromovich, J Lakey, MC Pereyra, N Tymes IEEE transactions on signal processing 52 (3), 628-635, 2004 | 101 | 2004 |

Sharp bounds for general commutators on weighted Lebesgue spaces D Chung, M Pereyra, C Perez Transactions of the American Mathematical Society 364 (3), 1163-1177, 2012 | 81 | 2012 |

Lecture notes on dyadic harmonic analysis MC Pereyra Second Summer School in Analysis and Mathematical Physics, 1-60, 2001 | 71* | 2001 |

Harmonic analysis: from Fourier to wavelets MC Pereyra, LA Ward American Mathematical Soc., 2012 | 62 | 2012 |

Wavelets, their friends, and what they can do for you MJ Mohlenkamp, MC Pereyra European Mathematical Society, 2008 | 58* | 2008 |

Haar bases on quasi-metric measure spaces, and dyadic structure theorems for function spaces on product spaces of homogeneous type A Kairema, J Li, MC Pereyra, LA Ward Journal of Functional Analysis 271 (7), 1793-1843, 2016 | 40 | 2016 |

Dyadic harmonic analysis and weighted inequalities: the sparse revolution MC Pereyra New Trends in Applied Harmonic Analysis, Volume 2: Harmonic Analysis …, 2019 | 30 | 2019 |

Haar multipliers, paraproducts, and weighted inequalities NH Katz, MC Pereyra Analysis of Divergence: Control and Management of Divergent Processes, 145-170, 1999 | 30 | 1999 |

Divergence-free multiwavelets on rectangular domains J Lakey, MC Pereyra Lecture Notes in Pure and Applied Mathematics, 203-240, 2000 | 19 | 2000 |

Haar multipliers meet Bellman functions MC Pereyra | 18* | 2009 |

On the resolvents of dyadic paraproducts. MC Pereyra Revista Matemática Iberoamericana 10 (3), 627-664, 1994 | 18 | 1994 |

Weighted estimates for dyadic paraproducts and - multipliers with complexity JC Moraes, MC Pereyra | 16 | 2013 |

On the two weights problem for the Hilbert transform NH Katz, MC Pereyra Revista Matemática Iberoamericana 13 (1), 211-243, 1997 | 16 | 1997 |

Geometric characterizations of embedding theorems: for Sobolev, Besov, and Triebel–Lizorkin spaces on spaces of homogeneous type—via orthonormal wavelets Y Han, Y Han, Z He, J Li, C Pereyra The Journal of Geometric Analysis 31 (9), 8947-8978, 2021 | 15 | 2021 |

Weighted inequalities and dyadic harmonic analysis MC Pereyra Excursions in Harmonic Analysis, Volume 2: The February Fourier Talks at the …, 2013 | 14* | 2013 |

Divergence-free multiwavelets JD Lakey, PR Massopust, MC Pereyra Approximation theory IX 2, 161-168, 1998 | 13 | 1998 |

Atomic decomposition of product Hardy spaces via wavelet bases on spaces of homogeneous type Y Han, J Li, MC Pereyra, LA Ward arXiv preprint arXiv:1810.03788, 2018 | 10 | 2018 |

Sharp bounds for -Haar multipliers on O Beznosova, JC Moraes, MC Pereyra arXiv preprint arXiv:1212.3749, 2012 | 9 | 2012 |

On the nonexistence of certain divergence-free multiwavelets JD Lakey, MC Pereyra Wavelets and signal processing, 41-54, 2003 | 8 | 2003 |